xia_engine.document.SpaceEngine

class xia_engine.document.SpaceEngine

Bases: BatchEngine

For batch space usage

Comments:

Only usable when batch is given. Table name is like batch_id-table_name

__init__()

Methods

__init__()

analyze(document_class, analytic_model)

Run the analytic model

backup(document_class[, location, ...])

Backup data of a model.

batch(operations, originals)

Data Batch Modification

compile(document_class, analytic_request[, ...])

Compile the analysis request

connect([document_class])

Connect to the engine

create(document_class, db_content[, doc_id, ...])

Create a document

create_async(document_class, db_content[, ...])

Create a document in asynchronous mode

create_collection(document_class)

Create Collection if needed

db_to_display(document_class, db_content[, ...])

Convert data from database form to display form

delete(document_class, doc_id[, batch_id])

Delete a document by using id

drop(document_class[, batch_id])

Drop the given collection

drop_batch([batch_id])

Drop the database which holds batch id

fetch(document_class[, batch_id])

Get document one by one from a list of document id

fetch_async(document_class, *args)

Get document one by one from a list of document id in asynchronous mode

get(document_class, doc_id[, batch_id])

Get Document in asynchronous mode

get_async(document_class, doc_id)

Get Document in asynchronous mode

get_connection([document_class])

Get engine connection。 Always using existed one when it is possible

get_decoder(field[, inner_field])

Get Decoder for a field

get_encoder(field[, inner_field])

Get Encoder for a field

lock(document_class, doc_id[, timeout])

Lock entries for write

merge(document_class[, start, end, purge, ...])

Merge data from log section into main table

parse_search_option(key)

Reference to search method for the specifications

parse_update_option(key)

Reference to update method for the specifications

replicate(document_class, task_list)

Data replication

restore(document_class[, location, ...])

Restore data of a model

scan(_document_class[, _batch_id, ...])

Scan the document class and get the document id list

scan_async(_document_class[, _acl_queries, ...])

Scan the document class and get the document id list in asynchronous mode

search(_document_class, *args[, _batch_id, ...])

Searching and yield document by document

search_async(_document_class, *args[, ...])

Searching and yield document by document in asynchronous mode

set(document_class, doc_id, db_content[, ...])

Overwrite whole document

timed_release(class_name, doc_id)

truncate(document_class)

Remove all data from the given collection

unlock(document_class, doc_id)

Release the for write

update(_document_class, _doc_id[, batch_id])

Update a document

update_doc_id(document_class, db_content, ...)

Update document id to new value

Attributes

MATCH_OPERATIONS

OPERATORS

search options

ORDER_TYPES

order options

UPDATE_TYPES

update options

analyzer

Analytic Compiler

async_create

Supporting async in asynchronous mode

async_read

Supporting read in asynchronous mode

backup_coder

Coder to be used to backup / restore

backup_storer

Storer to be used to backup / restore

decoders

Engine specific value decoder

encoders

Engine specific value encoder

engine_connector

Connector function

engine_connector_class

Connector Class use an object to handler parameters

engine_db_shared

if the value is False, each data model will have its own connector by default

engine_default_connector_param

default connection parameter

engine_foreign_key_check

Dependency check will be performed at engine level

engine_param

Engine parameter name

engine_scope_check

Scope check will be performed at engine level (pass document level check)

engine_unique_check

Unique check will be performed at engine level (pass document level check)

key_required

scan_and_fetch

Possible to separate the search operation into scan and fetch

store_embedded_as_table

Store embedded document as separate tables

support_unknown

OPERATORS = {'__eq__': '==', '__ge__': '>=', '__gt__': '>', '__le__': '<=', '__like__': 'LIKE', '__lt__': '<', '__ne__': '!='}

search options

ORDER_TYPES = {'__asc__': 'asc', '__desc__': 'desc'}

order options

UPDATE_TYPES = {'__append__': 'append', '__delete__': 'delete', '__inc__': 'increase', '__mul__': 'multiply', '__remove__': 'remove'}

update options

classmethod analyze(document_class: Type[BaseDocument], analytic_model: dict)

Run the analytic model

Parameters
  • analytic_model – Analyze model

  • document_class – (subclass of BaseDocument): Document definition

analyzer = None

Analytic Compiler

async_create: bool = False

Supporting async in asynchronous mode

async_read: bool = False

Supporting read in asynchronous mode

classmethod backup(document_class: Type[BaseDocument], location: Optional[str] = None, data_encode: Optional[str] = None, data_format: Optional[str] = None, data_store: Optional[str] = None, **kwargs)

Backup data of a model. The real implementation must use kwargs to distribute loads

Parameters
  • document_class (subclass of BaseDocument) – Document definition4

  • data_encode (str) – Backup Data Code

  • data_format (str) – Backup Data Format

  • data_store (str) – Backup Data Store location

  • location (str) – Data location to e used by data store

  • **kwargs – parameter to be passed at engine level

backup_coder = None

Coder to be used to backup / restore

backup_storer = None

Storer to be used to backup / restore

classmethod batch(operations: list, originals: dict)

Data Batch Modification

The data will be updated at once or rolled back

Parameters
  • operations – List of operations to be done * op: Operation type. “S” = set, “I” = create, “D” = delete, “U” = update * cls: Document Class * doc_id: Document ID * content: Document Content in Database form

  • originals – Dictionary (Help to roll back) * class: document class name * id: document id * content: document db form

Returns

return True amd empty message if batch is successful, else False with error message

classmethod compile(document_class: Type[BaseDocument], analytic_request: dict, acl_condition=None)

Compile the analysis request

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • analytic_request – analytic request

  • acl_condition – User Access List transformed to where conditions

Returns

Model}

Return type

A analytic model ready to be executed represented by as dict {Engine

classmethod connect(document_class: Optional[Type[BaseDocument]] = None)

Connect to the engine

Parameters

document_class – (subclass of BaseDocument): Document definition

Returns

Connection

classmethod create(document_class: Type[BaseDocument], db_content: dict, doc_id: Optional[str] = None, batch_id: str = '')

Create a document

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • db_content (dict) – content to be put to engine

  • doc_id (str) – Having predefined doc id, None means could be generated by engine

Returns

Document ID

async classmethod create_async(document_class: Type[BaseDocument], db_content: dict, doc_id: Optional[str] = None) str

Create a document in asynchronous mode

classmethod create_collection(document_class: Type[BaseDocument])

Create Collection if needed

Parameters

document_class – document_class

classmethod db_to_display(document_class: Type[BaseDocument], db_content: dict, lazy: bool = True, catalog: Optional[dict] = None, show_hidden: bool = False)

Convert data from database form to display form

Parameters
  • document_class – Document class

  • db_content – Database Content

  • lazy – Lazy Mode

  • catalog – Data Catalog

  • show_hidden – Show hidden member or not

Returns

document in display form

decoders = {}

Engine specific value decoder

classmethod delete(document_class: Type[BaseDocument], doc_id: str, batch_id: str = '')

Delete a document by using id

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • doc_id – Document ID

classmethod drop(document_class: Type[BaseDocument], batch_id: str = '')

Drop the given collection

Parameters

document_class (subclass of BaseDocument) – Document definition

classmethod drop_batch(batch_id: str = '')

Drop the database which holds batch id

Parameters

batch_id – Batch Identity

encoders = {}

Engine specific value encoder

engine_connector: callable = None

Connector function

engine_connector_class = None

Connector Class use an object to handler parameters

engine_db_shared = True

if the value is False, each data model will have its own connector by default

engine_default_connector_param: dict = {}

default connection parameter

engine_foreign_key_check: bool = False

Dependency check will be performed at engine level

engine_param: str = 'batch'

Engine parameter name

engine_scope_check: bool = False

Scope check will be performed at engine level (pass document level check)

engine_unique_check: bool = False

Unique check will be performed at engine level (pass document level check)

classmethod fetch(document_class: Type[BaseDocument], batch_id: str = '', *args)

Get document one by one from a list of document id

Returns

An iterator for id, document dictionary pair

Comments:

when doc id is empty, it is probably because that the user only has partial read authorizations

async classmethod fetch_async(document_class: Type[BaseDocument], *args)

Get document one by one from a list of document id in asynchronous mode

classmethod get(document_class: Type[BaseDocument], doc_id: str, batch_id: str = '') dict

Get Document in asynchronous mode

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • doc_id – Document ID

Returns

Document content on python dict

async classmethod get_async(document_class: Type[BaseDocument], doc_id: str) dict

Get Document in asynchronous mode

classmethod get_connection(document_class: Optional[Type[BaseDocument]] = None)

Get engine connection。 Always using existed one when it is possible

Parameters

document_class – (subclass of BaseDocument): Document definition

Returns

Connection

classmethod get_decoder(field: type, inner_field: Optional[type] = None) callable

Get Decoder for a field

Parameters
  • field (type) – class type of field class

  • inner_field (type) – class type of inner field (Such qs ListField)

Returns

Decoder function

classmethod get_encoder(field: type, inner_field: Optional[type] = None) callable

Get Encoder for a field

Parameters
  • field (type) – class type of field class

  • inner_field (type) – class type of inner field (Such qs ListField)

Returns

Encoder function

classmethod lock(document_class: Type[BaseDocument], doc_id: str, timeout: Optional[int] = None)

Lock entries for write

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • doc_id (str) – Having predefined doc id, None means could be generated by engine

  • timeout – Timeout for lock

Returns

return True amd empty message if lock is successful, else false with error message

Comments:

Lock need based engine implementation

classmethod merge(document_class: Type[BaseDocument], start: Optional[float] = None, end: Optional[float] = None, purge: bool = False, criteria: Optional[dict] = None)

Merge data from log section into main table

Parameters
  • document_class – (subclass of BaseDocument): Document definition

  • start (timestamp) – Starting time point

  • end (timestamp) – Ending time point

  • purge – will remove the entries from log table after execution

  • criteria – only merge the given criteria

Comments:

This method is designed to keep a high consistency data. All replicated data is kept on the log table. Only merge the data into main table when passed the consistency check

classmethod parse_search_option(key: str)

Reference to search method for the specifications

Parameters

key (str) –

Returns

key, operator, order

classmethod parse_update_option(key: str)

Reference to update method for the specifications

Parameters

key (str) –

Returns

key, update

classmethod replicate(document_class: Type[BaseDocument], task_list: list)

Data replication

Parameters
  • document_class – Python class of document

  • task_list – List of dictionary with the following keys: * id: document id * content: document db form * op: operation type: “I” for insert, “D” for delete, “U” for update, “L” for load

Returns

List of dictionary with the following keys:
  • id: document id

  • op: operation type: “I” for insert, “D” for delete, “U” for update, “L” for load

  • time: time when data is replicated

  • status: status code of HTTP protocol

Return type

task_results

classmethod restore(document_class: Type[BaseDocument], location: Optional[str] = None, data_encode: Optional[str] = None, data_format: Optional[str] = None, data_store: Optional[str] = None, **kwargs)

Restore data of a model

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • data_encode (str) – Backup Data Code

  • data_format (str) – Backup Data Format

  • data_store (str) – Backup Data Store location

  • location (str) – Data location to e used by data store

  • **kwargs – parameter to be passed at engine level

classmethod scan(_document_class: Type[BaseDocument], _batch_id: str = '', _acl_queries: Optional[list] = None, _limit: int = 1000, **kwargs)

Scan the document class and get the document id list

Parameters
  • _document_class (subclass of BaseDocument) – Document definition

  • _acl_queries (list) – Extra queries calculated from user’s access control list

  • _limit (int) – Limited the scan results

  • **kwargs – Named arguments are search string

Notes for search string:
  • key, str pair: single value search

  • key, list pair: array_contains_any search

  • embedded search: a__b means b component of a. a.b means the key’s name is a.b

  • operators: key is end with __op__. The following op are supported:
    • __eq__: Could ignore because it is a by default behavior

    • __lt__, __le__, __gt__, __ge__, __ne__: as is supposed by the name

    • __asc__, __desc__: the result will be ordered by the fields

Attentions:
  • The complex query might raise compatible issues

scan_and_fetch: bool = False

Possible to separate the search operation into scan and fetch

async classmethod scan_async(_document_class: Type[BaseDocument], _acl_queries: Optional[list] = None, _limit: int = 1000, **kwargs)

Scan the document class and get the document id list in asynchronous mode

classmethod search(_document_class: Type[BaseDocument], *args, _batch_id: str = '', _acl_queries: Optional[list] = None, _limit: int = 50, **kwargs)

Searching and yield document by document

Parameters
  • _document_class (subclass of BaseDocument) – Document definition

  • *args – Unnamed arguments are document id

  • _acl_queries – Extra queries calculated from user’s Access Control List

  • _limit – Search result is limited

  • **kwargs – Named arguments are search string

Notes for search string:
  • key, str pair: single value search

  • key, list pair: array_contains_any search

  • embedded search: a__b means b component of a. a.b means the key’s name is a.b

  • operators: key is end with __op__. The following op are supported:
    • __eq__: Could ignore because it is a by default behavior

    • __lt__, __le__, __gt__, __ge__, __ne__: as is supposed by the name

    • __asc__, __desc__: the result will be ordered by the fields

Attentions:
  • The complex query might raise compatible issues

async classmethod search_async(_document_class: Type[BaseDocument], *args, _acl_queries: Optional[list] = None, _limit: int = 50, **kwargs)

Searching and yield document by document in asynchronous mode

classmethod set(document_class: Type[BaseDocument], doc_id: str, db_content: dict, batch_id: str = '') str

Overwrite whole document

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • doc_id – Document ID

  • db_content – content to be put to engine

Returns

Document ID

store_embedded_as_table: bool = False

Store embedded document as separate tables

classmethod truncate(document_class: Type[BaseDocument])

Remove all data from the given collection

Parameters

document_class (subclass of BaseDocument) – Document definition

classmethod unlock(document_class: Type[BaseDocument], doc_id: str)

Release the for write

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • doc_id (str) – Having predefined doc id, None means could be generated by engine

Returns

return True amd empty message if lock is successful, else false with error message

Comments:

Unlock need based engine implementation

classmethod update(_document_class: Type[BaseDocument], _doc_id: str, batch_id: str = '', **kwargs) dict

Update a document

Parameters
  • _document_class (subclass of BaseDocument) – Document definition

  • _doc_id (str) – Document ID

  • **kwargs – Named keyword for update

Returns

Updated data

Notes for delete string:
  • embedded update: a__b means b component of a. a.b means the key’s name is a.b

  • operators: key is end with __op__. The following op are supported:
    • __append__: Append an item to array

    • __remove__: Remove an item

    • __delete__: Delete the field

classmethod update_doc_id(document_class: Type[BaseDocument], db_content: dict, old_id: str, new_id: str)

Update document id to new value

Parameters
  • document_class (subclass of BaseDocument) – Document definition

  • db_content – content to be put to new engine

  • old_id – old document id

  • new_id – new document id

Returns

new_document_id if the process is successful

Comments:

By default, we return old id(not implemented). When it is implemented in the Engine, will return new document id